Gating Movement of Acetylcholine Receptor Caught by Plunge-Freezing
نویسندگان
چکیده
The nicotinic acetylcholine (ACh) receptor converts transiently to an open-channel form when activated by ACh released into the synaptic cleft. We describe here the conformational change underlying this event, determined by electron microscopy of ACh-sprayed and freeze-trapped postsynaptic membranes. ACh binding to the α subunits triggers a concerted rearrangement in the ligand-binding domain, involving an ~1-Å outward displacement of the extracellular portion of the β subunit where it interacts with the juxtaposed ends of α-helices shaping the narrow membrane-spanning pore. The β-subunit helices tilt outward to accommodate this displacement, destabilising the arrangement of pore-lining helices, which in the closed channel bend inward symmetrically to form a central hydrophobic gate. Straightening and tangential motion of the pore-lining helices effect channel opening by widening the pore asymmetrically and increasing its polarity in the region of the gate. The pore-lining helices of the α(γ) and δ subunits, by flexing between alternative bent and straight conformations, undergo the greatest movements. This coupled allosteric transition shifts the structure from a tense (closed) state toward a more relaxed (open) state.
منابع مشابه
The Role of Loop 5 in Acetylcholine Receptor Channel Gating
Nicotinic acetylcholine receptor channel (AChR) gating is an organized sequence of molecular motions that couples a change in the affinity for ligands at the two transmitter binding sites with a change in the ionic conductance of the pore. Loop 5 (L5) is a nine-residue segment (mouse alpha-subunit 92-100) that links the beta4 and beta5 strands of the extracellular domain and that (in the alpha-...
متن کاملMechanics of Channel Gating of the Nicotinic Acetylcholine Receptor
The nicotinic acetylcholine receptor (nAChR) is a key molecule involved in the propagation of signals in the central nervous system and peripheral synapses. Although numerous computational and experimental studies have been performed on this receptor, the structural dynamics of the receptor underlying the gating mechanism is still unclear. To address the mechanical fundamentals of nAChR gating,...
متن کاملNormal mode analysis suggests a quaternary twist model for the nicotinic receptor gating mechanism.
We present a three-dimensional model of the homopentameric alpha7 nicotinic acetylcholine receptor (nAChR), that includes the extracellular and membrane domains, developed by comparative modeling on the basis of: 1), the x-ray crystal structure of the snail acetylcholine binding protein, an homolog of the extracellular domain of nAChRs; and 2), cryo-electron microscopy data of the membrane doma...
متن کاملTherapeutic implications of a selective alpha7 nicotinic receptor abnormality in schizophrenia.
A convergence of preclinical pharmacology, and human autopsy and genetic data support the existence of reduced expression and function of the alpha7 nicotinic receptor in patients with schizophrenia. The alpha7 nicotinic receptor is a member of a family of ligand-gated ion channels. The alpha7 nicotinic receptor may play an essential role in auditory sensory gating and voluntary smooth pursuit ...
متن کاملMUSCARINIC RECEPTOR SUBTYPES IN SMOOTH MUSCLE FROM THE BODY OF HUMAN STOMACH
Up to date, there are four pharmacologically characterized subtypes of muscarinic receptors (M1, M2, M3 and M4). In our study we have investigated muscarinic receptor subtypes in smooth muscle layers of human stomach. Isolated preparations of longitudinal and circular muscle layers from human stomach were used. Acetylcholine, bethanechol, carbachol, pilocarpine and AHR -602 produced concen...
متن کامل